论文标题

部分可观测时空混沌系统的无模型预测

Analysis and optimal control of a malaria mathematical model under resistance and population movement

论文作者

Montoya, Cristhian, Romero-Leiton, Jhoana P.

论文摘要

在这项工作中,提出了两个在阻力下的疟疾数学模型。更确切地说,第一个模型显示,当人口对抗疟药具有抵抗力时,在疟疾感染下,人类与蚊子在斑块中的相互作用,而蚊子种群对杀虫剂有抵抗力。对于第二个模型,在一个斑块中建立的相同疟疾传播动态下分析了两个斑块中的人类种群运动。对于单个斑块,就局部基本生殖数量而言,平衡溶液的存在和稳定条件得到了开发。这些结果揭示了前进分叉的存在和无疾病平衡的全球稳定性。在两个补丁的情况下,提出了参数灵敏度分析的理论和数值框架。之后,将抗疟药和杀虫剂的使用纳入了控制策略,并制定了最佳控制问题。在两种模型中都进行了数值实验,以显示我们理论结果的可行性。

In this work, two mathematical models for malaria under resistance are presented. More precisely, the first model shows the interaction between humans and mosquitoes inside a patch under infection of malaria when the human population is resistant to antimalarial drug and mosquitoes population is resistant to insecticides. For the second model, human-mosquitoes population movements in two patches is analyzed under the same malaria transmission dynamic established in one patch. For a single patch, existence and stability conditions for the equilibrium solutions in terms of the local basic reproductive number are developed. These results reveal the existence of a forward bifurcation and the global stability of disease-free equilibrium. In the case of two patches, a theoretical and numerical framework on sensitivity analysis of parameters is presented. After that, the use of antimalarial drugs and insecticides are incorporated as control strategies and an optimal control problem is formulated. Numerical experiments are carried out in both models to show the feasibility of our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源