论文标题
在基于Qubit的量子计算机上模拟资历零空间中的量子化学
Simulating quantum chemistry in the seniority-zero space on qubit-based quantum computers
论文作者
论文摘要
准确的量子化学模拟在经典计算机上对于工业相关规模的问题仍然具有挑战性,并且有理由希望量子计算可以帮助突破技术可行的界限。虽然变异量子本元(VQE)算法可能已经将嘈杂的中间尺度量子(NISQ)设备变成有用的机器,但必须尽一切努力尽可能有效地使用稀缺的量子资源。我们结合了所谓的零或配对电子,计算量子化学的近似值与用于在基于栅极的量子计算机上模拟分子化学的技术,并获得非常有效的资源量子量子模拟算法。尽管通过配对电子近似丢失了一些精度,但我们表明,使用释放的量子资源来增加基集可以导致更准确的结果和减少必要数量的量子计算数量的数量级数量级,这已经适用于诸如锂液化液体之类的简单系统。我们还讨论了基于选择后的错误缓解方案,该方案在考虑给定的汉密尔顿格式时显示了有吸引力的缩放,从而提高了其NISQ实施的可行性。
Accurate quantum chemistry simulations remain challenging on classical computers for problems of industrially relevant sizes and there is reason for hope that quantum computing may help push the boundaries of what is technically feasible. While variational quantum eigensolver (VQE) algorithms may already turn noisy intermediate scale quantum (NISQ) devices into useful machines, one has to make all efforts to use the scarce quantum resources as efficiently as possible. We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers and obtain a very resource efficient quantum simulation algorithm. While some accuracy is lost through the paired-electron approximation, we show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs by several orders of magnitude, already for a simple system like lithium hydride. We also discuss an error mitigation scheme based on post-selection which shows an attractive scaling when the given Hamiltonian format is considered, increasing the viability of its NISQ implementation.