论文标题

$ d_6^{(1)} $的超差 - 旋转节点的几何晶体

Ultra-Discretization of $D_6^{(1)}$- Geometric Crystal at the spin node

论文作者

Misra, Kailash C., Pongprasert, Suchada

论文摘要

令$ \ mathfrak g $为索引的代数,索引设置$ i = \ {0,1,2,\ cdots,n \} $。 It is conjectured in \cite{KNO} that for each Dynkin node $k \in I \setminus \{0\}$ the affine Lie algebra $\mathfrak g$ has a positive geometric crystal whose ultra-discretization is isomorphic to the limit of a coherent family of perfect crystals for the Langland dual ${\mathfrak g} ^L$.在本文中,我们表明,在自旋节点$ k = 6 $,在\ cite {kmn2}中给出的完美晶体家族形成一个连贯的家族,并表明其极限$ b^{6,\ infty} $是对\ cite a for Aff act的正式criptal for Aff cite {mp}的ultra-discretization {mp} $ d_6^{(1)} $,在这种情况下证明了猜想。

Let $\mathfrak g$ be an affine Lie algebra with index set $I = \{0, 1, 2, \cdots , n\}$. It is conjectured in \cite{KNO} that for each Dynkin node $k \in I \setminus \{0\}$ the affine Lie algebra $\mathfrak g$ has a positive geometric crystal whose ultra-discretization is isomorphic to the limit of a coherent family of perfect crystals for the Langland dual ${\mathfrak g} ^L$. In this paper we show that at the spin node $k=6$, the family of perfect crystals given in \cite{KMN2} form a coherent family and show that its limit $B^{6,\infty}$ is isomorphic to the ultra-discretization of the positive geometric crystal we constructed in \cite{MP} for the affine Lie algebra $D_6^{(1)}$ which proves the conjecture in this case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源