论文标题

用于使用原子量子杂种系统实验的电流离子陷阱

Electro-optical ion trap for experiments with atom-ion quantum hybrid systems

论文作者

Perego, Elia, Duca, Lucia, Sias, Carlo

论文摘要

在原子,分子和光学(AMO)物理学的开发中,原子 - 离子杂交系统的特征在于实验AMO工具箱中存在新工具:Atom-IOM ION相互作用。最先进的原子 - 离子实验中的主要局限性之一是保罗陷阱中离子动力学的微功能成分表示,因为原子 - 离子碰撞中的微功能存在导致一种加热机制,从而预防了原子 - 离子混合物不断发生相干进化。在这里,我们报告了一种新型离子捕获设置的设计和模拟,特别是通过超电原子实验集成的。通过基于光学和静电场的组合,使用电流陷阱来实现离子限制,因此离子动力学中不会存在微动分量。限制光场是由在弓形领带的交叉处产生的深度光学晶格产生的,而静态电动四极杆可确保离子在光学晶格正交中的离子限制。该设置还配备了一个Paul陷阱,用于冷却热原子束的光离子产生的离子,并且两个离子陷阱的设计有​​助于将离子从Paul Trap转换为电光陷阱。

In the development of atomic, molecular and optical (AMO) physics, atom-ion hybrid systems are characterized by the presence of a new tool in the experimental AMO toolbox: atom-ion interactions. One of the main limitations in state-of-the-art atom-ion experiments is represented by the micromotion component of the ions' dynamics in a Paul trap, as the presence of micromotion in atom-ion collisions results in a heating mechanism that prevents atom-ion mixtures from undergoing a coherent evolution. Here we report the design and the simulation of a novel ion trapping setup especially conceived for the integration with an ultracold atoms experiment. The ion confinement is realized by using an electro-optical trap based on the combination of an optical and an electrostatic field, so that no micromotion component will be present in the ions' dynamics. The confining optical field is generated by a deep optical lattice created at the crossing of a bow-tie cavity, while a static electric quadrupole ensures the ions' confinement in the plane orthogonal to the optical lattice. The setup is also equipped with a Paul trap for cooling the ions produced by photoionization of a hot atomic beam, and the design of the two ion traps facilitates the swapping of the ions from the Paul trap to the electro-optical trap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源