论文标题

应变的偏移层中极化子的可调伪磁场

Tunable pseudo-magnetic fields for polaritons in strained metasurfaces

论文作者

Mann, Charlie-Ray, Horsley, Simon A. R., Mariani, Eros

论文摘要

人造磁场正在通过使曾经被认为是带电颗粒独有的外来现象的模仿来彻底改变我们操纵中性颗粒的能力。特别是,由于其简单的几何起源,在人工晶格中由非均匀菌株产生的伪磁场引起了人们的极大兴趣。但是,迄今为止,这些应变诱导的伪磁场未能模仿真实磁场的可调性,因为它们仅由应变构型决定。在这里,我们克服了由紧张的跨膜支撑的极性子的明显局限性,可以用经典的偶极天线或量子偶极发射器实现。在不改变应变构型的情况下,我们推出了如何通过通过封闭的光子腔修改电磁环境来调整伪磁场的,从而改变了偶极子之间的相互作用的性质。值得注意的是,由于短距离库仑相互作用与远程光子介导的相互作用之间的竞争,我们发现可以在任何应变构型的临界空腔高度下完全关闭伪磁场。因此,通过仅改变空腔高度,我们表现出可调的洛伦兹样力,可以打开/关闭,并且北极星兰道水平的前所未有的崩溃和复兴。首次解锁这种可调节的伪磁性,除了传统的紧密结合物理学的范式外,提出了新的有趣的问题。

Artificial magnetic fields are revolutionizing our ability to manipulate neutral particles, by enabling the emulation of exotic phenomena once thought to be exclusive to charged particles. In particular, pseudo-magnetic fields generated by nonuniform strain in artificial lattices have attracted considerable interest because of their simple geometrical origin. However, to date, these strain-induced pseudo-magnetic fields have failed to emulate the tunability of real magnetic fields because they are dictated solely by the strain configuration. Here, we overcome this apparent limitation for polaritons supported by strained metasurfaces, which can be realized with classical dipole antennas or quantum dipole emitters. Without altering the strain configuration, we unveil how one can tune the pseudo-magnetic field by modifying the electromagnetic environment via an enclosing photonic cavity which modifies the nature of the interactions between the dipoles. Remarkably, due to the competition between short-range Coulomb interactions and long-range photon-mediated interactions, we find that the pseudo-magnetic field can be entirely switched off at a critical cavity height for any strain configuration. Consequently, by varying only the cavity height, we demonstrate a tunable Lorentz-like force that can be switched on/off and an unprecedented collapse and revival of polariton Landau levels. Unlocking this tunable pseudo-magnetism for the first time poses new intriguing questions beyond the paradigm of conventional tight-binding physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源