论文标题
测量恒星磁性螺旋密度
Measuring stellar magnetic helicity density
论文作者
论文摘要
螺旋性是磁场的基本特性,但迄今为止,只有在一个恒星 - 太阳中观察到它的演变。在本文中,我们提供了一种简单的技术,用于映射任何仅使用可观察量的恒星表面的大规模螺旋密度:多型和环形磁场成分(可以从Zeeman-Doppler成像中确定)和恒星半径。我们在0.1-1.34 m $ _ \ odot $的质量范围内使用51颗恒星的样品,以显示螺旋密度如何与恒星质量,Rossby数量,磁能和年龄相关。我们发现,随着Rossby数字$ r_o $的减少,大规模的螺旋密度增加,达到$ r_o \ simeq 0.1 $的峰值,饱和度或低于该元素。对于完全和部分感染的恒星,我们发现,根据功率定律,平均绝对螺旋密度尺度具有平均平方的环形磁通量密度:$ | \ langle {h \,} $ \ langle {\ rm {b_ {tor}}^2 _ {} \,\ rangle}^{0.86 \,\ pm \,0.04} $。这种关系中的散射与太阳周期之间的变化一致,我们分别使用太阳周期23和24之间的模拟和观测来计算。我们发现随着年龄的增长,螺旋密度显着降低。
Helicity is a fundamental property of a magnetic field but to date it has only been possible to observe its evolution in one star - the Sun. In this paper we provide a simple technique for mapping the large-scale helicity density across the surface of any star using only observable quantities: the poloidal and toroidal magnetic field components (which can be determined from Zeeman-Doppler imaging) and the stellar radius. We use a sample of 51 stars across a mass range of 0.1-1.34 M$_\odot$ to show how the helicity density relates to stellar mass, Rossby number, magnetic energy and age. We find that the large-scale helicity density increases with decreasing Rossby number $R_o$, peaking at $R_o \simeq 0.1$, with a saturation or decrease below that. For both fully- and partially-convective stars we find that the mean absolute helicity density scales with the mean squared toroidal magnetic flux density according to the power law: $|\langle{h\,}\rangle|$ $\propto$ $\langle{\rm{B_{tor}}^2_{}\,\rangle}^{0.86\,\pm\,0.04}$. The scatter in this relation is consistent with the variation across a solar cycle, which we compute using simulations and observations across solar cycles 23 and 24 respectively. We find a significant decrease in helicity density with age.