论文标题

机器人在看不见的空间中使用抽象地图导航

Robot Navigation in Unseen Spaces using an Abstract Map

论文作者

Talbot, Ben, Dayoub, Feras, Corke, Peter, Wyeth, Gordon

论文摘要

建筑环境中的人类导航取决于符号空间信息,该信息具有未实现的潜力来增强机器人导航能力。诸如标签,标志,地图,规划师,口语方向和导航手势之类的信息来源向建筑环境的导航员传达了大量空间信息;机器人通常会忽略的大量信息。我们提出了一个机器人导航系统,该系统使用人类采用相同的符号空间信息,目的是在看不见的建筑环境中有目的地导航,其性能水平与人类相当。导航系统使用称为抽象图的新型数据结构来想象从空间符号中看不见空间的可延展空间模型。然后使用来自机器人的感觉运动感知为在看不见的环境中的象征目标位置提供有目的的导航。我们展示了如何使用动态系统为抽象地图创建可延展的空间模型,并提供开源实现,以鼓励未来在符号导航领域的工作。在现实世界中的环境中评估了人类和机器人的符号导航性能。本文以对人类导航策略进行定性分析的结论,提供了进一步的见解,了解如何在未来的建筑环境中改善机器人的符号导航能力。

Human navigation in built environments depends on symbolic spatial information which has unrealised potential to enhance robot navigation capabilities. Information sources such as labels, signs, maps, planners, spoken directions, and navigational gestures communicate a wealth of spatial information to the navigators of built environments; a wealth of information that robots typically ignore. We present a robot navigation system that uses the same symbolic spatial information employed by humans to purposefully navigate in unseen built environments with a level of performance comparable to humans. The navigation system uses a novel data structure called the abstract map to imagine malleable spatial models for unseen spaces from spatial symbols. Sensorimotor perceptions from a robot are then employed to provide purposeful navigation to symbolic goal locations in the unseen environment. We show how a dynamic system can be used to create malleable spatial models for the abstract map, and provide an open source implementation to encourage future work in the area of symbolic navigation. Symbolic navigation performance of humans and a robot is evaluated in a real-world built environment. The paper concludes with a qualitative analysis of human navigation strategies, providing further insights into how the symbolic navigation capabilities of robots in unseen built environments can be improved in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源