论文标题

在脑连通性分析中诱导核定总估计量(旋转器)的稀疏性估计器(旋转器)

A Sparsity Inducing Nuclear-Norm Estimator (SpINNEr) for Matrix-Variate Regression in Brain Connectivity Analysis

论文作者

Brzyski, Damian, Hu, Xixi, Goni, Joaquin, Ances, Beau, Randolph, Timothy W., Harezlak, Jaroslaw

论文摘要

经典标量响应回归方法将协变量视为矢量,并估计回归系数的相应向量。但是,在医疗应用中,回归器通常是多维阵列的形式。例如,人们可能有兴趣使用MRI成像来确定哪些大脑区域与健康结果有关。矢量化二维图像阵列是一种不令人满意的方法,因为它破坏了图像的固有空间结构,并且在计算上可能具有挑战性。我们提出了另一种方法 - 正则矩阵回归 - 回归系数的矩阵被定义为解决特定优化问题的解决方案。该方法(称为稀疏性诱导核定标准估计器(Spinner))同时对回归系数矩阵施加了两种惩罚类型---核定常和Lasso Norm-norm--鼓励也具有入口处稀疏性的低级矩阵解决方案。乘数的交替方向方法(ADMM)的特定实现用于构建快速有效的数值求解器。我们的模拟表明,当与响应相关的条目(代表大脑的功能连接性)安排在良好的社区中时,Spinner在估计准确性方面的表现优于其他方法。旋转器用于研究与HIV相关结果与人脑功能连通性之间的关联。

Classical scalar-response regression methods treat covariates as a vector and estimate a corresponding vector of regression coefficients. In medical applications, however, regressors are often in a form of multi-dimensional arrays. For example, one may be interested in using MRI imaging to identify which brain regions are associated with a health outcome. Vectorizing the two-dimensional image arrays is an unsatisfactory approach since it destroys the inherent spatial structure of the images and can be computationally challenging. We present an alternative approach - regularized matrix regression - where the matrix of regression coefficients is defined as a solution to the specific optimization problem. The method, called SParsity Inducing Nuclear Norm EstimatoR (SpINNEr), simultaneously imposes two penalty types on the regression coefficient matrix---the nuclear norm and the lasso norm---to encourage a low rank matrix solution that also has entry-wise sparsity. A specific implementation of the alternating direction method of multipliers (ADMM) is used to build a fast and efficient numerical solver. Our simulations show that SpINNEr outperforms other methods in estimation accuracy when the response-related entries (representing the brain's functional connectivity) are arranged in well-connected communities. SpINNEr is applied to investigate associations between HIV-related outcomes and functional connectivity in the human brain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源