论文标题

多相关序列的分解,用于通勤沿素数

A decomposition of multicorrelation sequences for commuting transformations along primes

论文作者

Le, Anh N., Moreira, Joel, Richter, Florian K.

论文摘要

我们研究由通勤转换的系统产生的多相关序列。我们的主要结果是对Frantzikinakis的分解结果的完善,它指出,对于每$ε> 0 $,可以分解用于通勤转换的任何多相关序列,作为nilsequence $ ϕ(n)$和序列$ω(n)$满意的nilsequence $ ϕ(n)$的总和$ \ lim_ {n \ to \ infty} \ frac {1} {n} \ sum_ {n = 1}^n |ω(n)| <ε$和$ \ lim_ {n \ to \ infty} \ Mathbb {p} \ cap [n]} |ω(p)| <ε$。

We study multicorrelation sequences arising from systems with commuting transformations. Our main result is a refinement of a decomposition result of Frantzikinakis and it states that any multicorrelation sequences for commuting transformations can be decomposed, for every $ε>0$, as the sum of a nilsequence $ϕ(n)$ and a sequence $ω(n)$ satisfying $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N |ω(n)|<ε$ and $\lim_{N\to\infty}\frac{1}{|\mathbb{P}\cap [N]|}\sum_{p\in \mathbb{P}\cap [N]} |ω(p)|<ε$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源