论文标题
在随机环境中触发一维随机步行时间的猝灭中心极限速率的最佳收敛速率
Optimal rates of convergence for quenched central limit theorem rates for hitting times of one-dimensional random walks in random environments
论文作者
论文摘要
我们考虑了在随机环境中击中一维随机步行时间的淬灭中心极限定理的收敛速率。先前的结果已经确定了衰减速率的多项式上限,有时比$ n^{ - 1/2} $(经典浆果 - 估计值的最佳速率)慢。在这里,我们证明了以前的上限实际上是淬灭CLT的最佳多项式率。
We consider the rates of convergence of the quenched central limit theorem for hitting times of one-dimensional random walks in a random environment. Previous results had identified polynomial upper bounds for the rates of decay which are sometimes slower than $n^{-1/2}$ (the optimal rate in the classical Berry-Esseen estimates). Here we prove that the previous upper bounds are in fact the best possible polynomial rates for the quenched CLT.