论文标题
来自扭曲量子双打的非Pauli拓扑稳定器代码
Non-Pauli topological stabilizer codes from twisted quantum doubles
论文作者
论文摘要
长期以来,人们可以利用长期纠缠的拓扑阶段来保护量子信息免受不必要的局部错误。实际上,内在拓扑顺序的条件让人联想到忠实的量子误差校正标准。同时,使用一般拓扑命令进行实际错误校正的承诺在很大程度上尚未实现。在这项工作中,我们通过表明可以使用Abelian Twist的量子双模型来实现量子误差校正,从而有助于建立这种联系。通过利用位于这些晶格模型的核心的小组共同数据,我们将这些汉密尔顿人的术语转换为全级,成对通勤的操作员,定义通勤稳定器。所得的代码由非Pauli通勤稳定器定义,其本地系统可以是Qubits或更高的维量子系统。因此,这项工作建立了凝结物理物理学和量子信息理论之间的新联系,并构建了工具,以系统地设计新的拓扑量子误差校正图生或表面代码模型以外的代码。
It has long been known that long-ranged entangled topological phases can be exploited to protect quantum information against unwanted local errors. Indeed, conditions for intrinsic topological order are reminiscent of criteria for faithful quantum error correction. At the same time, the promise of using general topological orders for practical error correction remains largely unfulfilled to date. In this work, we significantly contribute to establishing such a connection by showing that Abelian twisted quantum double models can be used for quantum error correction. By exploiting the group cohomological data sitting at the heart of these lattice models, we transmute the terms of these Hamiltonians into full-rank, pairwise commuting operators, defining commuting stabilizers. The resulting codes are defined by non-Pauli commuting stabilizers, with local systems that can either be qubits or higher dimensional quantum systems. Thus, this work establishes a new connection between condensed matter physics and quantum information theory, and constructs tools to systematically devise new topological quantum error correcting codes beyond toric or surface code models.