论文标题

图形卷积计算机用于上下文感知的建议系统

Graph Convolution Machine for Context-aware Recommender System

论文作者

Wu, Jiancan, He, Xiangnan, Wang, Xiang, Wang, Qifan, Chen, Weijian, Lian, Jianxun, Xie, Xing

论文摘要

建议中的最新进展表明,可以通过在用户项目交互图上的执行图形卷积来学习更好的用户和项目表示。但是,此类发现主要仅限于协作过滤(CF)方案,在该方案中,相互作用上下文不可用。在这项工作中,我们将图形卷积的优势扩展到上下文感知的推荐系统(CARS,它代表可以处理各种侧面信息的通用模型类型)。我们建议\ textit {Graph卷积计算机}(GCM),这是一个由三个组件组成的端到端框架:编码器,图形卷积(GC)层和解码器。编码器将用户,项目和上下文投射到嵌入向量中,这些向量传递给了GC层,这些层是在用户信息图上使用上下文感知的图形卷积来完善用户和项目嵌入的。解码器通过考虑用户,项目和上下文嵌入之间的相互作用来消化精致的嵌入以输出预测分数。我们对Yelp和Amazon的三个现实数据集进行了实验,从而验证了GCM的有效性以及对汽车执行图形卷积的好处。我们的实现可在\ url {https://github.com/wujcan/gcm}上获得。

The latest advance in recommendation shows that better user and item representations can be learned via performing graph convolutions on the user-item interaction graph. However, such finding is mostly restricted to the collaborative filtering (CF) scenario, where the interaction contexts are not available. In this work, we extend the advantages of graph convolutions to context-aware recommender system (CARS, which represents a generic type of models that can handle various side information). We propose \textit{Graph Convolution Machine} (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution (GC) layers, and a decoder. The encoder projects users, items, and contexts into embedding vectors, which are passed to the GC layers that refine user and item embeddings with context-aware graph convolutions on user-item graph. The decoder digests the refined embeddings to output the prediction score by considering the interactions among user, item, and context embeddings. We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS. Our implementations are available at \url{https://github.com/wujcan/GCM}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源