论文标题

基于EEG的脑部计算机界面(BCIS):有关信号传感技术和计算智能方法及其应用的最新研究调查

EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and their Applications

论文作者

Gu, Xiaotong, Cao, Zehong, Jolfaei, Alireza, Xu, Peng, Wu, Dongrui, Jung, Tzyy-Ping, Lin, Chin-Teng

论文摘要

大脑计算机界面(BCI)是用户和系统之间强大的通信工具,可增强人脑直接与环境交流和互动的能力。在过去的几十年中,神经科学和计算机科学的进步导致了BCI的激动人心的发展,从而使BCI成为计算神经科学和智能领域的顶级跨学科研究领域。最近的技术进步,例如可穿戴感应设备,实时数据流,机器学习和深度学习方法,对基于脑电图(EEG)的BCI进行了转化和医疗保健应用的兴趣。许多人受益于基于脑电图的BCI,这有助于在工作场所或在家中单调的任务下持续监测认知状态的波动。在这项研究中,我们调查了BCI应用中EEG信号传感技术和计算智能方法的最新文献,并补偿了过去五年(2015- 2019年)系统摘要中的差距。具体而言,我们首先回顾了BCI及其重大障碍的当前状态。然后,我们提出了高级信号传感和增强技术,分别以收集和清洁脑电图信号。此外,我们展示了最先进的计算智能技术,包括可解释的模型,转移学习,深度学习和组合,以监视,维护或跟踪人类认知状态以及在普遍应用程序中的操作绩效。最后,我们提供了一些创新的BCI启发的医疗保健应用程序,并讨论了基于EEG的BCIS的一些未来研究指示。

Brain-Computer Interface (BCI) is a powerful communication tool between users and systems, which enhances the capability of the human brain in communicating and interacting with the environment directly. Advances in neuroscience and computer science in the past decades have led to exciting developments in BCI, thereby making BCI a top interdisciplinary research area in computational neuroscience and intelligence. Recent technological advances such as wearable sensing devices, real-time data streaming, machine learning, and deep learning approaches have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications. Many people benefit from EEG-based BCIs, which facilitate continuous monitoring of fluctuations in cognitive states under monotonous tasks in the workplace or at home. In this study, we survey the recent literature of EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensated for the gaps in the systematic summary of the past five years (2015-2019). In specific, we first review the current status of BCI and its significant obstacles. Then, we present advanced signal sensing and enhancement technologies to collect and clean EEG signals, respectively. Furthermore, we demonstrate state-of-art computational intelligence techniques, including interpretable fuzzy models, transfer learning, deep learning, and combinations, to monitor, maintain, or track human cognitive states and operating performance in prevalent applications. Finally, we deliver a couple of innovative BCI-inspired healthcare applications and discuss some future research directions in EEG-based BCIs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源