论文标题

基于规则的脑电图分类系统,用于歧视中风患者手动运动的尝试

A Rule-Based EEG Classification System for Discrimination of Hand Motor Attempts in Stroke Patients

论文作者

Gu, Xiaotong, Cao, Zehong

论文摘要

中风患者具有脑功能障碍的症状,可能会积极损害患者的身体活动能力,例如冻结手动运动。尽管来自外部设备的康复训练对手动移动恢复有益,但对于启动运动功能恢复目的,仍然有宝贵的研究优点用于识别手中的手。在这项初步研究中,我们使用了来自8名中风患者的脑电图(EEG)数据集,每个受试者涉及40次EEG左运动尝试和40次EEG右运动尝试试验。然后,我们提出了一个基于规则的脑电图分类系统,用于识别中风患者运动的侧面。在特定的情况下,我们提取了1-50 Hz功率光谱特征,作为一系列知名分类模型的输入特征。这些分类模型的预测标签通过四种类型的规则测量,这些规则确定了最终预测的标签。我们的实验结果表明,我们提出的基于规则的EEG分类系统达到了$ 99.83 \ pm 0.42 \%$精度,$ 99.98 \ pm 0.13 \%$ precision,$ 99.66 \ pm 0.84 \%$ $召回率,$ 99.83 \ $ 99.83 \ pm 0.43 \ pm 0.43 \%$ f-score,该模型均为单一的模型,该模型是单一的表演,该模型众所周知众所周知的典范。我们的发现表明,我们提出的基于规则的脑电图分类系统的出色表现具有中风患者的手部康复的潜力。

Stroke patients have symptoms of cerebral functional disturbance that could aggressively impair patient's physical mobility, such as freezing of hand movements. Although rehabilitation training from external devices is beneficial for hand movement recovery, for initiating motor function restoration purposes, there are still valuable research merits for identifying the side of hands in motion. In this preliminary study, we used electroencephalogram (EEG) datasets from 8 stroke patients, with each subject involving 40 EEG trials of left motor attempts and 40 EEG trials of right motor attempts. Then, we proposed a rule-based EEG classification system for identifying the side in motion for stroke patients. In specific, we extracted 1-50 Hz power spectral features as input features of a series of well-known classification models. The predicted labels from these classification models were measured by four types of rules, which determined the finalised predicted label. Our experiment results showed that our proposed rule-based EEG classification system achieved $99.83 \pm 0.42 \% $ accuracy, $ 99.98 \pm 0.13\% $ precision, $ 99.66 \pm 0.84 \% $ recall, and $ 99.83 \pm 0.43\% $ f-score, which outperformed the performance of single well-known classification models. Our findings suggest that the superior performance of our proposed rule-based EEG classification system has the potential for hand rehabilitation in stroke patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源