论文标题
Plectic Galois对CM点和Hilbert Modular品种的连接组件的作用
Plectic Galois action on CM points and connected components of Hilbert modular varieties
论文作者
论文摘要
我们扩展了Nekováù的拼盘半转移的构建,以定义对希尔伯特模块化品种的plectic galois作用。更准确地说,我们以与$ r_ {f/\ mathbb {q}}} {\ rm gl} _2 $相关的组相关的统一的shimura品种研究。我们在CM点和这些Shimura品种的连接组件集上定义了Pletic Galois动作,并表明这两个动作是兼容的。这扩展了Neková树的plet虫猜想。
We expand on Nekovář's construction of the plectic half transfer to define a plectic Galois action on Hilbert modular varieties. More precisely, we study in a unifying fashion Shimura varieties associated to groups that differ only in the centre from $R_{F/\mathbb{Q}}{\rm GL}_2$. We define plectic Galois actions on the CM points and on the set of connected components of these Shimura varieties, and show that these two actions are compatible. This extends the plectic conjecture of Nekovář--Scholl.