论文标题
最小非独特的赤乳式iets
Minimal non uniquely ergodic flipped IETs
论文作者
论文摘要
在本文中,我们证明了最少的非独特千古的IET的存在。特别是,我们为任何$ 1 \ leq k \ leq 10 $构建了明确的最小非独特的Ergodic $(10,k)$ - IET。这回答了[C.〜Gutierrez,S。〜lloyd,V。〜Medvedev,B.〜Pires和E.〜 Zhuzhoma.Transitive Circle Exchange Transfals用翻转的转换。离散连续。 dyn。 Syst。,26(1):251--263,2010]。结果,我们还得出了任何$ n \ geq 10 $和$ 1 \ leq k \ leq n $均匀的$ n \ geq 10 $和$ 1 \ leq k \ leq k \ leq k \ leq n-1 $ n $ n $奇怪的情况。
In this paper we prove the existence of minimal non uniquely ergodic flipped IETs. In particular, we build explicitly minimal non uniquely ergodic $(10,k)$-IETs for any $1\leq k \leq 10$. This answers an open question posed in [C.~Gutierrez, S.~Lloyd, V.~Medvedev, B.~Pires, and E.~Zhuzhoma.Transitive circle exchange transformations with flips. Discrete Contin. Dyn. Syst.,26 (1):251--263, 2010]. As a consequence, we also derive the existence of transitive non uniquely ergodic $(n,k)$-IETs, for any $n\geq 10$ and $1\leq k\leq n$ if $n$ is even, and $1\leq k\leq n-1$ if $n$ is odd.