论文标题
在微胶菌温度下,用光学悬浮的纳米图质量进行力和加速度传感
Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures
论文作者
论文摘要
本文证明了10 $ $ M $ M直径的质量质量运动的冷却,光悬浮的二氧化硅球有效温度为$ 50 \pm22μ$ k,通过最大程度地减少捕获激光器的技术指向噪声来实现。这种低噪声导致加速和力敏感性为$ 95 \ pm41 $ n $ n $ g/\ sqrt {\ mathrm {hz}} $($ g = 9.8 $ m/s $^2 $)和$ 0.95 \ pm0.11.11 $ an $/\ sqrt {这种力敏感性可与光学悬浮的纳米球相提并论,该纳米球的大量较小$ 10^4 $倍,对应于加速度灵敏度,该敏感性更好,该敏感性更好。进一步表明,在这些条件下,球体仍处于$ \ sim 10^{ - 7} $ MBAR的压力下,没有主动冷却的时间比一天的时间长。反馈冷却在中等压力方面仍然是必要的,激发了对微球的损失机制的全面研究,并可以更好地了解真空中无反馈光学诱捕的要求。这项工作可以实现高度敏感性搜索作用于微米大小质量的加速度和力,包括超出标准模型以外的新物理学可以生产的加速度。
This paper demonstrates cooling of the center-of-mass motion of 10 $μ$m-diameter optically levitated silica spheres to an effective temperature of $50\pm22 μ$K, achieved by minimizing the technical pointing noise of the trapping laser. This low noise leads to an acceleration and force sensitivity of $95\pm41$ n$g/\sqrt{\mathrm{Hz}}$ ($g = 9.8$ m/s$^2$) and $0.95\pm0.11$ aN$/\sqrt{\mathrm{Hz}}$, respectively, at frequencies near 50 Hz. This force sensitivity is comparable to that demonstrated for optically levitated nanospheres that are $10^4$ times less massive, corresponding to an acceleration sensitivity that is several orders of magnitude better. It is further shown that under these conditions the spheres remain stably trapped at pressures of $\sim 10^{-7}$ mbar with no active cooling for periods longer than a day. Feedback cooling is still necessary in the moderate-pressure regime, motivating a comprehensive study of the loss mechanisms of the microspheres and providing better understanding of the requirements for feedback-free optical trapping in vacuum. This work can enable high-sensitivity searches for accelerations and forces acting on micron-sized masses, including those that could be produced by new physics beyond the Standard Model.