论文标题
大规模恒星形成的一种新的混合辐射转移方法
A new hybrid radiative transfer method for massive star formation
论文作者
论文摘要
恒星照射的频率依赖性/混合方法在大规模恒星形成的数值模拟中至关重要。我们试图比较恒星形成模拟中的流出和积聚机制。我们使用灰色M1闭合关系来研究杂化辐射转移方法的准确性,以用于原始恒星照射和灰色通量限制的扩散(FLD),以便在其他任何地方发射的光子。我们将自适应网状改进代码RAMSE的FLD模块与Ramses-RT相结合,该模块基于M1闭合关系。我们的混合动力(M1+FLD)方法在M1模块的恒星温度下取得平均不透明度,而不是局部环境辐射场。我们已经在三个级别的光学厚度辐射的磁盘的辐射转移测试中测试了这种方法,并将温度结构与RADMC-3D和MCFOST进行了比较。我们将其应用于大型恒星形成的辐射流动力学模拟。我们的测试验证了我们的混合方法,以确定光学上薄和中等光的厚度方案中辐照盘的温度结构,而最光学厚的测试表明了我们方法的限制。光学厚的设置突出了混合方法在FLD无法捕获磁盘中部分捕获自屏蔽的能力。使用混合方法,辐射加速度大100倍。它始终导致大量恒星形成模拟中的扩展和更宽的辐射流出大约 +50%。我们在$ t {\ simeq} 0.7τ_\ mathrm {ff} $上获得$ 17.6 m_ \ odot $,而积聚阶段正在进行中。最后,尽管使用精致来解决辐射腔,但在我们的模拟中没有出现雷利 - 泰勒的不稳定性,我们根据熵梯度通过物理参数证明了它们的缺失是合理的。 (简略)
Frequency-dependent/hybrid approaches for stellar irradiation are of primary importance in numerical simulations of massive star formation. We seek to compare outflow and accretion mechanisms in star formation simulations. We investigate the accuracy of a hybrid radiative transfer method using the gray M1 closure relation for proto-stellar irradiation and gray flux-limited diffusion (FLD) for photons emitted everywhere else. We have coupled the FLD module of the adaptive-mesh refinement code Ramses with Ramses-RT, which is based on the M1 closure relation. Our hybrid (M1+FLD) method takes an average opacity at the stellar temperature for the M1 module, instead of the local environmental radiation field. We have tested this approach in radiative transfer tests of disks irradiated by a star for three levels of optical thickness and compared the temperature structure with RADMC-3D and MCFOST. We applied it to a radiation-hydrodynamical simulation of massive star formation. Our tests validate our hybrid approach for determining the temperature structure of an irradiated disk in the optically-thin and moderately optically-thick regimes and the most optically-thick test shows the limitation of our approach. The optically-thick setups highlight the ability of the hybrid method to partially capture the self-shielding in the disk while the FLD cannot. The radiative acceleration is 100 times greater with the hybrid method. It consistently leads to about +50% more extended and wider-angle radiative outflows in the massive star formation simulation. We obtain a $17.6 M_\odot$ at $t{\simeq}0.7 τ_\mathrm{ff}$, while the accretion phase is ongoing. Finally, despite the use of refinement to resolve the radiative cavities, no Rayleigh-Taylor instability appears in our simulations, and we justify their absence by physical arguments based on the entropy gradient. (abridged)