论文标题

对称R.汤普森组之间的一些嵌入

Some embeddings between symmetric R. Thompson groups

论文作者

Aroca, Julio, Bleak, Collin

论文摘要

令$ m \ leq n \ in \ mathbb {n} $,以及$ g \ leq s_m $和$ h \ leq s_n $。在本文中,我们找到了对称的R. Thompson组$ v_m(g)$和$ v_n(h)$之间的嵌入条件。当$ n \ equiv 1 \ mod(m-1)$,在其他某些技术条件下,我们通过拓扑结合发现了$ v_n(h)$ $ v_n(h)$的嵌入。在相同的模块化条件下,我们还从2019年开始纯粹是纯代数构造Birget,以找到一个$ h \ leq s_m $的组和$ v_m(g)$ in $ v_n(h)$中的$ v_m(g)$。

Let $m\leq n\in \mathbb{N}$, and $G\leq S_m$ and $H\leq S_n$. In this article we find conditions enabling embeddings between the symmetric R. Thompson groups $V_m(G)$ and $V_n(H)$. When $n\equiv 1 \mod(m-1)$ and under some other technical conditions we find an embedding of $V_n(H)$ in $V_m(G)$ via topological conjugation. With the same modular condition we also generalise a purely algebraic construction of Birget from 2019 to find a group $H\leq S_m$ and an embedding of $V_m(G)$ in $V_n(H)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源