论文标题

$ ϕ^8 $理论之间的扭结力之间的力

Forces Between Kinks in $ϕ^8$ Theory

论文作者

d'Ornellas, Peru

论文摘要

我们研究了在一维标量场理论中出现的扭结动力学,其八个势能包含四分之一的最小值和两个二次最小值。我们分析表明,扭结和扭结和扭结成对与与界线间距离的第四功率缩放的力相互作用,并计算其强度。这是使用两种不同的技术完成的。第一个采用集体坐标方法来近似求解加速扭结的轮廓的运动方程。第二个是基于将电势修改为能够支持包含多个纠结的静态解决方案的电势。我们表明,这两种方法给出了一致的结果。所有计算均由数值工作支持,这些工作证实了我们结果的有效性。

We investigate the dynamics of the kinks that emerge in a one-dimensional scalar field theory with an octic potential containing a quartic minimum and two quadratic minima. We show analytically that kink-antikink and kink-kink pairs interact with a force that scales with the fourth power of the inter-kink distance, and calculate its strength. This is done using two different techniques. The first employs a collective coordinate method to approximately solve the equation of motion for the profile of an accelerating kink. The second is based on modifying the potential to one that is able to support static solutions containing multiple kinks. We show that the two methods give consistent results. All calculations are supported by numerical work that confirms the validity of our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源