论文标题

通过网络流量分析,物联网行为监控

IoT Behavioral Monitoring via Network Traffic Analysis

论文作者

Sivanathan, Arunan

论文摘要

智能住宅,企业和城市越来越多地配备了众多物联网(IoT),从智能照明到安全摄像机。尽管物联网网络有可能使我们的生活受益,但它们会带来传统IT网络所没有看到的隐私和安全挑战。由于缺乏可见性,这种智能环境的操作员并不经常意识到它们的物联网资产,更不用说每个物联网设备是否正常运行,可以防止网络攻击。该论文是我们开发技术以介绍物联网的网络行为模式,自动化物联网分类,推断出其操作环境并检测指示网络攻击的异常行为的努力的结晶。 我们通过调查物联网生态系统开始本论文,同时回顾了当前的脆弱性评估,入侵检测和行为监测的方法。对于我们的第一个贡献,我们通过流量模式收集交通轨迹并通过属性来表征IoT设备的网络行为。我们开发了一种基于机器学习的强大推理引擎,该推理引擎训练有这些属性,并展示了超过99%精度的28个IoT设备的实时分类。我们的第二个贡献通过降低属性提取的成本,同时还可以识别物联网设备状态来增强分类。原型实施和评估证明了我们监督的机器学习方法检测五个物联网设备行为变化的能力。我们的第三个也是最后的贡献开发了一个模块化的无监督推理引擎,该引擎动态地适应了新的IoT设备和/或对现有的IoT设备的更新,而无需模型的全系统范围重新培训。我们通过实验证明,我们的模型可以自动检测攻击和固件更改,该物联网设备的精度超过94%。

Smart homes, enterprises, and cities are increasingly being equipped with a plethora of Internet of Things (IoT), ranging from smart-lights to security cameras. While IoT networks have the potential to benefit our lives, they create privacy and security challenges not seen with traditional IT networks. Due to the lack of visibility, operators of such smart environments are not often aware of their IoT assets, let alone whether each IoT device is functioning properly safe from cyber-attacks. This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs, automate IoT classification, deduce their operating context, and detect anomalous behavior indicative of cyber-attacks. We begin this thesis by surveying IoT ecosystem, while reviewing current approaches to vulnerability assessments, intrusion detection, and behavioral monitoring. For our first contribution, we collect traffic traces and characterize the network behavior of IoT devices via attributes from traffic patterns. We develop a robust machine learning-based inference engine trained with these attributes and demonstrate real-time classification of 28 IoT devices with over 99% accuracy. Our second contribution enhances the classification by reducing the cost of attribute extraction while also identifying IoT device states. Prototype implementation and evaluation demonstrate the ability of our supervised machine learning method to detect behavioral changes for five IoT devices. Our third and final contribution develops a modularized unsupervised inference engine that dynamically accommodates the addition of new IoT devices and/or updates to existing ones, without requiring system-wide retraining of the model. We demonstrate via experiments that our model can automatically detect attacks and firmware changes in ten IoT devices with over 94% accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源