论文标题

毫米波长的M矮人耀斑的特性

Properties of M Dwarf Flares at Millimeter Wavelengths

论文作者

MacGregor, Meredith A., Osten, Rachel A., Hughes, A. Meredith

论文摘要

我们报告了Alma在220 GHz中从附近的M矮人Au Mic中检测到的两毫米耀斑。较大的耀斑的持续时间仅为$ \ sim35 $ sec,而峰值$ l_ {r} = 2 \ times10^{15} $ erg s $^{ - 1} $ hz $^{ - 1} $,以及$ | q/i |> 0.12 \ pm0.0.04 $ $ | q/i | q/i | q/i |> 0.12 \ pm0.04 $的线性降低极限。我们研究了这些新的AU MIC事件的特征以及先前在MacGregor等人中报道的Proxima CEN的特征。 (2018) - 即短持续时间,负光谱指数和显着的线性极化 - 可提供外部恒星大气中条件的新诊断和恒星耀斑颗粒加速的细节。事件价格($ \ sim20 $和$ 4 $事件日$^{ - 1} $分别为Au Mic和Proxima CEN)表明,毫米通常发生,但直到现在才被发现。分析观察频率的耀斑和对可能不连贯的发射机制的考虑证实,在耀斑过程的一部分中,MEV电子在恒星气氛中的存在。光谱指数指向电子的硬分布。在光曲线中的短持续时间和缺乏明显的指数衰减与简单的磁回路中的形成一致,而无线电发射占据了直接沉淀电子的主导。我们考虑了同步子和陀螺仪发射机制的可能性,尽管鉴于线性极化信号,同步加速器受到青睐。这意味着该发射必须在仅适度磁场强度的低密度环境中发生。对这种新发现的,显然是常见的恒星耀斑机制的更深入的了解正在等待更多的观察结果,并在其他波长下具有更好的耀斑成分。

We report on two millimeter flares detected by ALMA at 220 GHz from AU Mic, a nearby M dwarf. The larger flare had a duration of only $\sim35$ sec, with peak $L_{R}=2\times10^{15}$ erg s$^{-1}$ Hz$^{-1}$, and lower limit on linear polarization of $|Q/I|>0.12\pm0.04$. We examine the characteristics common to these new AU Mic events and those from Proxima Cen previously reported in MacGregor et al. (2018) - namely short durations, negative spectral indices, and significant linear polarization - to provide new diagnostics of conditions in outer stellar atmospheres and details of stellar flare particle acceleration. The event rates ($\sim20$ and $4$ events day$^{-1}$ for AU Mic and Proxima Cen, respectively) suggest that millimeter flares occur commonly but have been undetected until now. Analysis of the flare observing frequency and consideration of possible incoherent emission mechanisms confirms the presence of MeV electrons in the stellar atmosphere occurring as part of the flare process. The spectral indices point to a hard distribution of electrons. The short durations and lack of pronounced exponential decay in the light curve are consistent with formation in a simple magnetic loop, with radio emission predominating from directly precipitating electrons. We consider the possibility of both synchrotron and gyrosynchrotron emission mechanisms, although synchrotron is favored given the linear polarization signal. This would imply that the emission must be occurring in a low density environment of only modest magnetic field strength. A deeper understanding of this newly discovered and apparently common stellar flare mechanism awaits more observations with better-studied flare components at other wavelengths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源