论文标题
旋转质量不足的系统的无奇异性逆动力学
Singularity-Free Inverse Dynamics for Underactuated Systems with a Rotating Mass
论文作者
论文摘要
通过反向动力学对不足系统的运动控制包含配置奇异性。配置空间中的这些局限性主要源于被动关节/身体产生的惯性耦合。在这项研究中,我们提出了一个没有奇异性的模型,而旋转质量的轨迹在其圆圈周围具有小振幅正弦波。首先,我们为滚动系统得出修改的非线性动力学。同样,还证明了这种不足的系统的奇异区域。然后,在某些条件下设计了波参数以去除耦合奇点。我们从反向动力学中惯性基质的正确定性中获得这些条件。最后,通过在滚动载体的指定状态下使用规定的beta函数来确认仿真结果。由于我们的代数方法集成到非线性动力学中,因此所提出的解决方案具有巨大的潜力,可以扩展到具有多个自由度的拉格朗日力学。
Motion control of underactuated systems through the inverse dynamics contains configuration singularities. These limitations in configuration space mainly stem from the inertial coupling that passive joints/bodies create. In this study, we present a model that is free from singularity while the trajectory of the rotating mass has a small-amplitude sine wave around its circle. First, we derive the modified non-linear dynamics for a rolling system. Also, the singularity regions for this underactuated system is demonstrated. Then, the wave parameters are designed under certain conditions to remove the coupling singularities. We obtain these conditions from the positive definiteness of the inertia matrix in the inverse dynamics. Finally, the simulation results are confirmed by using a prescribed Beta function on the specified states of the rolling carrier. Because our algebraic method is integrated into the non-linear dynamics, the proposed solution has a great potential to be extended to the Lagrangian mechanics with multiple degrees-of-freedom.