论文标题

Tarskian古典相关逻辑

Tarskian classical relevant logic

论文作者

Maddux, Roger D.

论文摘要

Tarskian经典相关的逻辑TR源于Tarski在关系的基础上的工作以及一阶逻辑的基础,仅限于有限的许多变量,由Tarski和Givant提出,其书籍,其书籍的正式化理论无带变量的形式化,并在第一九部分中进行了总结。 TR与著名的逻辑KR密切相关。相关性逻辑的每个公式在Tarski的扩展的一阶逻辑中都具有相应的句子,该二进制关系与操作员在关系符号上的二进制关系。一个公式是在TR(按定义)中或KR(由定理)中的公式,并且仅当且仅当其相应的句子以一阶逻辑证明,最多可以使用四个变量来证明所有二进制关系的假设,即所有二进制关系都是密集的,而对于Tr,则在构图下进行通勤,或者对于KR,则是对称的。 TR的词汇与Meyer和Routley提出的经典相关逻辑CR $^*$相同,但TR正确包含Cr $^*$。 TR的帧特征是Cr $^*$的特征,并满足额外的框架条件。 TR中有与此帧条件相对应的TR中的公式(但不在Cr $^*$中),并提供了T. Kowalski定理的反例。 TR或KR的框架特征是其复杂代数是不可或缺的密集关系代数的帧特征,分别是交换性或对称的代数。对于这两个类别,同构类型的数量都像同构类型的三元类型一样生长。两类都获得了渐近公式。相似的结果适用于逻辑的层次结构,该逻辑由其相应句子的一阶证明中使用的变量数量定义。

The Tarskian classical relevant logic TR arises from Tarski's work on the foundations of the calculus of relations and on first-order logic restricted to finitely many variables, presented by Tarski and Givant their book, A Formalization of Set Theory without Variables, and summarized in first nine sections. TR is closely related to the well-known logic KR. Every formula of relevance logic has a corresponding sentence in Tarski's extended first-order logic of binary relations with operators on the relation symbols. A formula is in TR (by definition), or in KR (by a theorem), if and only if its corresponding sentence can be proved in first-order logic, using at most four variables, from the assumptions that all binary relations are dense and, for TR, commute under composition, or, for KR, are symmetric. The vocabulary of TR is the same as the classical relevant logic CR$^*$ proposed by Meyer and Routley but TR properly contains CR$^*$. The frames characteristic for TR are the ones that are characteristic for CR$^*$ and satisfy an extra frame condition. There are formulas in TR (but not in CR$^*$) that correspond to this frame condition and provide a counterexample to a theorem of T. Kowalski. The frames characteristic for TR, or KR, are the ones whose complex algebras are integral dense relation algebras that are commutative, or symmetric, respectively. For both classes, the number of isomorphism types grows like the number of isomorphism types of ternary relations. Asymptotic formulas are obtained for both classes. Similar results apply to a hierarchy of logics defined by the number of variables used in the first-order proofs of their corresponding sentences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源