论文标题

定向和无向图中的接近和远程性

Proximity and Remoteness in Directed and Undirected Graphs

论文作者

Ai, Jiangdong, Gerke, Stefanie, Gutin, Gregory, Mafunda, Sonwabile

论文摘要

让$ d $成为牢固连接的挖掘物。顶点$ v $ $ d $的平均距离$ \barσ(v)$是从$ v $到$ d $的所有其他顶点的算术平均值。偏远$ρ(d)$和接近$π(d)的$ d $是最大值和最小值$ d $的平均距离的最小值。我们在$π(d)$和$ρ(d)$上获得了尖锐的上和下限,这是$ n $ $ d $的订单的函数,并描述了所有界限的极端挖掘。我们还获得了强大的比赛的界限。我们表明,对于强大的比赛$ t $,当时我们有$π(t)=ρ(t)$,并且仅当$ t $是常规的。由于这个结果,可以猜想每个强大的Digraph $ d $,$π(d)=ρ(d)$都是常规的。我们提出了一个无限的不规则强度挖掘$ d $的家族,使得$π(d)=ρ(d)。$我们也描述了这样一个无向图的家庭。

Let $D$ be a strongly connected digraph. The average distance $\barσ(v)$ of a vertex $v$ of $D$ is the arithmetic mean of the distances from $v$ to all other vertices of $D$. The remoteness $ρ(D)$ and proximity $π(D)$ of $D$ are the maximum and the minimum of the average distances of the vertices of $D$, respectively. We obtain sharp upper and lower bounds on $π(D)$ and $ρ(D)$ as a function of the order $n$ of $D$ and describe the extreme digraphs for all the bounds. We also obtain such bounds for strong tournaments. We show that for a strong tournament $T$, we have $π(T)=ρ(T)$ if and only if $T$ is regular. Due to this result, one may conjecture that every strong digraph $D$ with $π(D)=ρ(D)$ is regular. We present an infinite family of non-regular strong digraphs $D$ such that $π(D)=ρ(D).$ We describe such a family for undirected graphs as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源