论文标题

BiotouchPass2:使用时间分配的复发神经网络触摸屏密码生物识别技术

BioTouchPass2: Touchscreen Password Biometrics Using Time-Aligned Recurrent Neural Networks

论文作者

Tolosana, Ruben, Vera-Rodriguez, Ruben, Fierrez, Julian, Ortega-Garcia, Javier

论文摘要

密码仍然每天用于各种应用程序。但是,在许多情况下,它们本身还不够安全。这项工作通过两因素身份验证来增强密码方案,要求用户绘制密码的每个字符,而不是像往常一样键入它们。这项研究的主要贡献如下:i)我们介绍了新颖的MobileTouchDB公共数据库,该数据库在无监督的移动方案中获得,而在位置,姿势和设备方面没有限制。该数据库包含由217个用户执行的64K在线字符样本,具有94个不同的智能手机型号,最多6个采购会议。 ii)我们对提出的方法进行了完整的分析,考虑了传统的身份验证系统,例如动态时间扭曲(DTW)和基于复发性神经网络(RNN)的新方法。此外,我们提出了一种新型方法,称为时间一致的复发性神经网络(TA-RNNS)。这种方法结合了DTW和RNN的潜力训练更强大的系统以防止攻击。 使用MobileTouchDB和E-BiodigitDB数据库进行了对所提出方法的完整分析。我们提出的TA-RNN系统的表现优于最终状态,仅使用一个4位密码和每个字符的一个培训样本就达到了最终2.38%的误差率。与传统的基于拼写的密码系统相比,这些结果鼓励我们提出的方法部署我们所提出的方法,在同一冒名顶替方案下,攻击将获得100%的成功率。

Passwords are still used on a daily basis for all kind of applications. However, they are not secure enough by themselves in many cases. This work enhances password scenarios through two-factor authentication asking the users to draw each character of the password instead of typing them as usual. The main contributions of this study are as follows: i) We present the novel MobileTouchDB public database, acquired in an unsupervised mobile scenario with no restrictions in terms of position, posture, and devices. This database contains more than 64K on-line character samples performed by 217 users, with 94 different smartphone models, and up to 6 acquisition sessions. ii) We perform a complete analysis of the proposed approach considering both traditional authentication systems such as Dynamic Time Warping (DTW) and novel approaches based on Recurrent Neural Networks (RNNs). In addition, we present a novel approach named Time-Aligned Recurrent Neural Networks (TA-RNNs). This approach combines the potential of DTW and RNNs to train more robust systems against attacks. A complete analysis of the proposed approach is carried out using both MobileTouchDB and e-BioDigitDB databases. Our proposed TA-RNN system outperforms the state of the art, achieving a final 2.38% Equal Error Rate, using just a 4-digit password and one training sample per character. These results encourage the deployment of our proposed approach in comparison with traditional typed-based password systems where the attack would have 100% success rate under the same impostor scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源