论文标题

触觉互联网中的节能雾计算的分布式优化

Distributed Optimization for Energy-efficient Fog Computing in the Tactile Internet

论文作者

Xiao, Yong, Krunz, Marwan

论文摘要

触觉互联网是一个新兴的概念,侧重于支持高保真,超响应性和广泛使用的人类对机器的相互作用。为了减少传输延迟并减轻互联网拥堵,已提倡雾计算是触觉互联网的重要组成部分。在本文中,我们专注于支持低层触觉互联网应用程序的雾计算网络的节能设计。我们研究了两个性能指标:最终用户的服务响应时间和雾节点的功率使用效率。我们量化了这两个指标之间的基本权衡,然后将我们的分析扩展到涉及雾节点之间合作的雾计算网络。我们介绍了一种新颖的合作雾计算概念,称为卸载转发,其中一组具有不同计算和能源资源的雾节可以相互配合。这种合作的目的是平衡不同的雾节节点处理的工作量,进一步减少服务响应时间并提高功率使用效率。我们开发基于双重分解的分布式优化框架,以实现最佳的权衡。我们的框架不需要雾节披露其私人信息,也不需要对彼此进行反式谈判。提出了两种分布式优化算法。一个基于具有双重分解的亚级别方法,另一个基于分布式的ADMM-VS。我们证明,这两种算法都可以实现最佳的工作负载分配,从而最大程度地降低了雾节点的给定功率效率约束下的响应时间。

Tactile Internet is an emerging concept that focuses on supporting high-fidelity, ultra-responsive, and widely available human-to-machine interactions. To reduce the transmission latency and alleviate Internet congestion, fog computing has been advocated as an important component of the Tactile Internet. In this paper, we focus on energy-efficient design of fog computing networks that support low-latency Tactile Internet applications. We investigate two performance metrics: Service response time of end-users and power usage efficiency of fog nodes. We quantify the fundamental tradeoff between these two metrics and then extend our analysis to fog computing networks involving cooperation between fog nodes. We introduce a novel cooperative fog computing concept, referred to as offload forwarding, in which a set of fog nodes with different computing and energy resources can cooperate with each other. The objective of this cooperation is to balance the workload processed by different fog nodes, further reduce the service response time, and improve the efficiency of power usage. We develop a distributed optimization framework based on dual decomposition to achieve the optimal tradeoff. Our framework does not require fog nodes to disclose their private information nor conduct back-and-forth negotiations with each other. Two distributed optimization algorithms are proposed. One is based on the subgradient method with dual decomposition and the other is based on distributed ADMM-VS. We prove that both algorithms can achieve the optimal workload allocation that minimizes the response time under the given power efficiency constraints of fog nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源