论文标题
某些类别的非线性动力学系统的同时状态和未知输入设置值观察者
Simultaneous State and Unknown Input Set-Valued Observers for Some Classes of Nonlinear Dynamical Systems
论文作者
论文摘要
在本文中,我们建议对某些类别具有未知输入信号的非线性界限 - 纠纷动力学系统的固定顺序设置值(以L2-norm hallballs的形式)观察者,这些系统同时找到了状态的有界性棒球和未知输入的输入,其中包括真实的状态和输入。以线性矩阵不等式(LMI)形式的必要条件(在二次稳定性意义上)的稳定性(在二次稳定性的意义上)得出了($ \ Mathcal {M {M},γ$),γ$) - 四倍约束((($ \ \ \ nlip {m Mathcal {m},γ$),lips systems-lips-qut systems-nrim classe clump systems:i lips;连续(ii)($ \ MATHCAL {a},γ$) - QC*和(iii)线性参数变化(LPV)系统。这种新的二次约束属性至少与非线性系统的增量二次约束属性一样一般,并且在本文中被证明可以体现广泛的非线性。此外,我们设计了满足二次稳定性条件的最佳$ \ MATHCAL {H} _ {\ infty} $观察者,并表明该设计导致界限有界的有界界面(UBIBS)估计radii/error Dynamics和均匀边界序列序列均匀界限。此外,我们为估计半径提供了封闭形式的上限序列,并为它们的收敛到稳态提供了足够的条件。最后,通过说明性示例证明了拟议的设定值观察者的有效性,在该例子中,我们将观察者的性能与一些现有观察者进行了比较。
In this paper, we propose fixed-order set-valued (in the form of l2-norm hyperballs) observers for some classes of nonlinear bounded-error dynamical systems with unknown input signals that simultaneously find bounded hyperballs of states and unknown inputs that include the true states and inputs. Necessary and sufficient conditions in the form of Linear Matrix Inequalities (LMIs) for the stability (in the sense of quadratic stability) of the proposed observers are derived for ($\mathcal{M},γ$)- Quadratically Constrained (($\mathcal{M},γ$)-QC) systems, which includes several classes of nonlinear systems: (I) Lipschitz continuous, (II) ($\mathcal{A},γ$)-QC* and (III) Linear Parameter-Varying (LPV) systems. This new quadratic constraint property is at least as general as the incremental quadratic constraint property for nonlinear systems and is proven in the paper to embody a broad range of nonlinearities. In addition, we design the optimal $\mathcal{H}_{\infty}$ observer among those that satisfy the quadratic stability conditions and show that the design results in Uniformly Bounded-Input Bounded-State (UBIBS) estimate radii/error dynamics and uniformly bounded sequences of the estimate radii. Furthermore, we provide closed-form upper bound sequences for the estimate radii and sufficient condition for their convergence to steady state. Finally, the effectiveness of the proposed set-valued observers is demonstrated through illustrative examples, where we compare the performance of our observers with some existing observers.