论文标题
分区在略微壁板和通量参数上起作用
Partition functions on slightly squashed spheres and flux parameters
论文作者
论文摘要
我们认为,在挤压球体上的一般三维CFT的自由能与压力调节的三分球收费$ T_4 $ $ t_4 $提议:1808.02052:1808.02052: $F_{\mathbb{S}^3_{\varepsilon}}^{(3)}(0)=\frac{1}{630}π^4 C_{\scriptscriptstyle T} t_4$, holds for an infinite family of holographic higher-curvature theories.使用全息计算进行四分之一的准广泛性重力和通用准阶段重力,我们确定了该术语和指控之间的类似分析关系,对五维理论有效:美元t_4 \ right] $。我们使用新的分析结果和数值结果来测试两种猜想,以确定共同耦合的标量和自由费米子,从而找到完美的一致性。
We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge $t_4$ proposed in arXiv:1808.02052: $F_{\mathbb{S}^3_{\varepsilon}}^{(3)}(0)=\frac{1}{630}π^4 C_{\scriptscriptstyle T} t_4$, holds for an infinite family of holographic higher-curvature theories. Using holographic calculations for quartic and quintic Generalized Quasi-topological gravities and general-order Quasi-topological gravities, we identify an analogous analytic relation between such term and the charges $t_2$ and $t_4$ valid for five-dimensional theories: $F_{\mathbb{S}^5_{\varepsilon}}^{(3)}(0)=\frac{2}{15}π^6 C_{ \scriptscriptstyle T} \left[1+\frac{3}{40} t_2+\frac{23}{630} t_4\right]$. We test both conjectures using new analytic and numerical results for conformally-coupled scalars and free fermions, finding perfect agreement.