论文标题

通过数据驱动的平衡模型学习主导的物理过程

Learning dominant physical processes with data-driven balance models

论文作者

Callaham, Jared L., Koch, James V., Brunton, Bingni W., Kutz, J. Nathan, Brunton, Steven L.

论文摘要

在整个科学史上,基于物理学的建模一直依赖于明智地将观察到的动态视为几个主要过程之间的平衡。但是,这种传统方法在数学上是笨拙的,仅适用于物理学中尺度严格分离的渐近方案。在这里,我们通过引入方程空间的概念来自动化并推广这种非质子状态的方法,在该方程空间中,不同的局部平衡显示为不同的子空间簇。然后,无监督的学习可以自动确定可以忽略条款组的区域。我们表明,我们的数据驱动平衡模型成功地在更丰富的系统中成功描述了主导平衡物理。特别地,这种方法在湍流,燃烧,非线性光学,地球物理流体和神经科学方面发现关键机械模型。

Throughout the history of science, physics-based modeling has relied on judiciously approximating observed dynamics as a balance between a few dominant processes. However, this traditional approach is mathematically cumbersome and only applies in asymptotic regimes where there is a strict separation of scales in the physics. Here, we automate and generalize this approach to non-asymptotic regimes by introducing the idea of an equation space, in which different local balances appear as distinct subspace clusters. Unsupervised learning can then automatically identify regions where groups of terms may be neglected. We show that our data-driven balance models successfully delineate dominant balance physics in a much richer class of systems. In particular, this approach uncovers key mechanistic models in turbulence, combustion, nonlinear optics, geophysical fluids, and neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源