论文标题

湍流通过重力塌陷调节行星形成的速率

Turbulence Regulates the Rate of Planetesimal Formation via Gravitational Collapse

论文作者

Gole, Daniel A., Simon, Jacob B., Li, Rixin, Youdin, Andrew N., Armitage, Philip J.

论文摘要

我们研究流媒体不稳定性与内在气相湍流之间的相互作用如何通过原星盘中的重力塌陷影响行星形成。湍流通过充当有效的湍流扩散率阻碍了粒子团块的形成,但它也可以通过浓缩固体(例如在区域流中)来促进行星形成。我们使用小局部域中流域不稳定性的数值模拟来量化湍流扩散率的效果,该局部域中的速度扰动被迫建立了大约kolmogorov的湍流。我们发现,一旦速度波动超过$ \l​​angleΔv^2 \ rangle \ simeq 10^{ - 3.5} -10^{ - 3} C_S^2 $,我们发现行星的形成被湍流抑制。湍流的强度在阈值之下,降低了固体结合到团块的速率。我们的结果表明,中间固体层的湍流增厚是湍流影响行星形成的主要机制,而行星的形成需要中间平面固体与气体比率$ε\ gtrsim 0.5 $。我们还使用一种新的团块跟踪方法来量化初始行星质量函数,以确定崩溃后不久的每个行星质量。对于形成行星的模型,我们表明质量函数由破碎的功率定律很好地描述,其参数对施加的湍流的包含和强度具有鲁棒性。原星磁盘中的湍流可能会大大超过半径上行星形成的阈值,而温度为$ t \ gtrsim 10^3 \ {\ rm k} $导致热离子化。因此,行星形成在内部磁盘中可能是不可能的,是灰尘升华半径的2-3倍。

We study how the interaction between the streaming instability and intrinsic gas-phase turbulence affects planetesimal formation via gravitational collapse in protoplanetary disks. Turbulence impedes the formation of particle clumps by acting as an effective turbulent diffusivity, but it can also promote planetesimal formation by concentrating solids, for example in zonal flows. We quantify the effect of turbulent diffusivity using numerical simulations of the streaming instability in small local domains, forced with velocity perturbations that establish approximately Kolmogorov-like turbulence. We find that planetesimal formation is suppressed by turbulence once velocity fluctuations exceed $\langle δv^2 \rangle \simeq 10^{-3.5} - 10^{-3} c_s^2$. Turbulence whose strength is just below the threshold reduces the rate at which solids are bound into clumps. Our results suggest that the well-established turbulent thickening of the mid-plane solid layer is the primary mechanism by which turbulence influences planetesimal formation and that planetesimal formation requires a mid-plane solid-to-gas ratio $ε\gtrsim 0.5$. We also quantify the initial planetesimal mass function using a new clump-tracking method to determine each planetesimal mass shortly after collapse. For models in which planetesimals form, we show that the mass function is well-described by a broken power law, whose parameters are robust to the inclusion and strength of imposed turbulence. Turbulence in protoplanetary disks is likely to substantially exceed the threshold for planetesimal formation at radii where temperatures $T \gtrsim 10^3 \ {\rm K}$ lead to thermal ionization. Planetesimal formation may therefore be unviable in the inner disk out to 2-3 times the dust sublimation radius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源