论文标题

贝叶斯参数估计应用于带电解质动力学的锂离子电池单个粒子模型

Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics

论文作者

Aitio, Antti, Marquis, Scott G., Ascencio, Pedro, Howey, David

论文摘要

本文介绍了锂离子电池模型的贝叶斯参数估计方法和可识别性分析,以确定唯一性,评估灵敏度并量化模型参数子集的不确定性。该分析基于具有电解质动力学的单个粒子模型,该模型使用包括电极平均项(电极平均术语)的渐近分析源自Doyle-Fuller-Newman模型。贝叶斯方法允许估算复杂的目标分布,从而可以对参数空间进行全局分析。该分析侧重于识别问题(i),在一组离散的准稳态电荷状态下,并在全球范围内与(ii)进行比较(ii),并连续地进行充电状态。使用来自多种数值模拟的合成数据在不同类型的电流激发下评估了该方法的性能。我们表明,在整体情况下,可以用较小的差异来估计各种扩散率以及转移数量,但在局部估计情况下的不确定性更大。这对估计也具有重要意义,在该估计中,参数可能会因电荷状态或其他潜在变量而变化。

This paper presents a Bayesian parameter estimation approach and identifiability analysis for a lithium-ion battery model, to determine the uniqueness, evaluate the sensitivity and quantify the uncertainty of a subset of the model parameters. The analysis was based on the single particle model with electrolyte dynamics, rigorously derived from the Doyle-Fuller-Newman model using asymptotic analysis including electrode-average terms. The Bayesian approach allows complex target distributions to be estimated, which enables a global analysis of the parameter space. The analysis focuses on the identification problem (i) locally, under a set of discrete quasi-steady states of charge, and in comparison (ii) globally with a continuous excursion of state of charge. The performance of the methodology was evaluated using synthetic data from multiple numerical simulations under diverse types of current excitation. We show that various diffusivities as well as the transference number may be estimated with small variances in the global case, but with much larger uncertainty in the local estimation case. This also has significant implications for estimation where parameters might vary as a function of state of charge or other latent variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源