论文标题

Zariski拓扑模块对交换环的模块ii

The Zariski topology-graph of modules over commutative rings II

论文作者

Ansari-Toroghy, Habibollah, Habibi, Shokoufeh

论文摘要

令$ m $为通勤环$ r $的模块。在本文中,我们继续研究有关Zariski拓扑图$ g(τ_t)$的研究(Zariski拓扑拓扑,模块上的Zariski拓扑图表,交换戒指,Comm。Elgebra。,42(2014),3283,3283----3296)。对于非空的子集$ t $ spec(m)$,我们为这些模块$ g(τ_t)$是两部分图的这些模块获得有用的特征。另外,我们证明,如果$ g(τ_t)$是一棵树,则$ g(τ_t)$是星形图。此外,我们研究Zariski拓扑图的着色,并研究$χ(g(τ_t))$和$ω(g(τ_t))$之间的相互作用。

Let $M$ be a module over a commutative ring $R$. In this paper, we continue our study about the Zariski topology-graph $G(τ_T)$ which was introduced in (The Zariski topology-graph of modules over commutative rings, Comm. Algebra., 42 (2014), 3283--3296). For a non-empty subset $T$ of $Spec(M)$, we obtain useful characterizations for those modules $M$ for which $G(τ_T)$ is a bipartite graph. Also, we prove that if $G(τ_T)$ is a tree, then $G(τ_T)$ is a star graph. Moreover, we study coloring of Zariski topology-graphs and investigate the interplay between $χ(G(τ_T))$ and $ω(G(τ_T))$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源