论文标题
保证使用符合有限元方法的Steklov操作员的较低特征值界限
Guaranteed lower eigenvalue bounds for Steklov operators using conforming finite element methods
论文作者
论文摘要
对于Steklov差异操作员的特征值问题,通过遵循LIU的方法,提出了使用符合有限元方法(FEM)的算法为特征值提供保证的下限。提出的方法需要对非均匀性诺伊曼问题进行a溶液的先验误差估计,这可以通过为相应的FEM空间和边界条件构造超圈来解决。还显示了数值示例以确认我们提出的方法的效率。
For the eigenvalue problem of the Steklov differential operator, by following Liu's approach, an algorithm utilizing the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed method requires the a priori error estimation for FEM solution to nonhomogeneous Neumann problems, which is solved by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples are also shown to confirm the efficiency of our proposed method.