论文标题

用于图形分析的域专用缓存管理

Domain-Specialized Cache Management for Graph Analytics

论文作者

Faldu, Priyank, Diamond, Jeff, Grot, Boris

论文摘要

Graph Analytics在金融,网络和业务物流等领域的一系列应用程序。图形分析域中使用的图形的共同属性是顶点连接的幂律分布,其中少数顶点负责图形中所有连接的高分子。这些富有连接的热,固有的顶点固有地表现出很高的再利用。但是,这项工作发现,由于图形分析的高度不规则访问模式,最先进的硬件高档管理方案在利用其重复使用方面很难利用。 作为响应,我们提出了用于图形分析的最后一级缓存的域特有的高速缓存管理。掌握了增加现有的缓存策略,以保护热门顶点,通过保护它们免受缓存的攻击,同时保持足够的灵活性,以根据需要捕获其他顶点的重复使用。通过利用轻量级软件支持来查明热门顶点,从而使硬件成本可忽略不计,从而使最先进的高速缓存管理方案采用的存储密集型预测机制的需求。在一组具有大型高态图数据集的多种图形分析应用程序上,所有数据点上的掌握优于先前的域 - 不可能的方案,在表现最佳的先前方案上,平均速度为4.2%(最大9.4%)。在低/无链数据集上,GRASP保持强大,而先前的方案始终会导致放缓。

Graph analytics power a range of applications in areas as diverse as finance, networking and business logistics. A common property of graphs used in the domain of graph analytics is a power-law distribution of vertex connectivity, wherein a small number of vertices are responsible for a high fraction of all connections in the graph. These richly-connected, hot, vertices inherently exhibit high reuse. However, this work finds that state-of-the-art hardware cache management schemes struggle in capitalizing on their reuse due to highly irregular access patterns of graph analytics. In response, we propose GRASP, domain-specialized cache management at the last-level cache for graph analytics. GRASP augments existing cache policies to maximize reuse of hot vertices by protecting them against cache thrashing, while maintaining sufficient flexibility to capture the reuse of other vertices as needed. GRASP keeps hardware cost negligible by leveraging lightweight software support to pinpoint hot vertices, thus eliding the need for storage-intensive prediction mechanisms employed by state-of-the-art cache management schemes. On a set of diverse graph-analytic applications with large high-skew graph datasets, GRASP outperforms prior domain-agnostic schemes on all datapoints, yielding an average speed-up of 4.2% (max 9.4%) over the best-performing prior scheme. GRASP remains robust on low-/no-skew datasets, whereas prior schemes consistently cause a slowdown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源