论文标题
射影模块的两个障碍的收敛性
Convergence of two obstructions for projective modules
论文作者
论文摘要
令$ x = spec {a} $表示常规仿射方案,在$ k $上,$ 1/2 \在k $中,$ \ dim x = d $。令$ p $表示poffastive $ a $ a $ module等级$ n \ geq 2 $。令$π_0\ left({\ Mathcal lo}(p)\右)$表示(nori)同型障碍物集,$ \ wideTilde {ch}^n \ left(x,λ^np \ right)$表示Chow Witt Group。在本文中,我们定义了自然(设置理论)映射} $$θ_p:π_0\ left({\ Mathcal lo}(p)(p)\ right)\ longrightArrow \ wideTilde {ch}^n \ left( 主要结果包括我最近出版的有关代数$ k $ - 理论的书。
Let $X=Spec{A}$ denote a regular affine scheme, over a field $k$, with $1/2\in k$ and $\dim X=d$. Let $P$ denote a projective $A$-module of rank $n\geq 2$. Let $π_0\left({\mathcal LO}(P)\right)$ denote the (Nori) Homotopy Obstruction set, and $\widetilde{CH}^n\left(X, Λ^nP\right)$ denote the Chow Witt group. In this article, we define a natural (set theoretic) map} $$ Θ_P: π_0\left({\mathcal LO}(P)\right) \longrightarrow \widetilde{CH}^n\left(X, Λ^nP\right) $$ The main Results are included in my recently published book on Algebraic $K$-Theory.