论文标题

人类运动预测的实验评估:迈向安全有效的人类机器人协作

Experimental Evaluation of Human Motion Prediction: Toward Safe and Efficient Human Robot Collaboration

论文作者

Zhao, Weiye, Sun, Liting, Liu, Changliu, Tomizuka, Masayoshi

论文摘要

在现代工业环境中,人类运动预测是不平凡的。对人类运动的准确预测不仅可以提高人体机器人协作的效率,而且还可以在与机器人附近的密切相处增强人类安全。在现有的预测模型中,这些模型的参数化和识别方法有所不同。目前尚不清楚预测模型的必要参数化,模型的在线适应是否需要以及预测是否可以帮助提高人体机器人协作期间的安全性和效率。这些问题是由于在实际人类机器人相互作用环境中以闭环方式定量评估各种预测模型的困难引起的。本文开发了一种评估不同预测模型的闭环性能的方法。特别是,我们将模型与不同的参数化和模型进行了比较,有或没有在线参数适应。在人类机器人协作平台上进行了广泛的实验。实验结果表明,人类运动预测显着提高了协作效率和人类安全。通过神经网络参数化的可自适应预测模型达到了最佳性能。

Human motion prediction is non-trivial in modern industrial settings. Accurate prediction of human motion can not only improve efficiency in human robot collaboration, but also enhance human safety in close proximity to robots. Among existing prediction models, the parameterization and identification methods of those models vary. It remains unclear what is the necessary parameterization of a prediction model, whether online adaptation of the model is necessary, and whether prediction can help improve safety and efficiency during human robot collaboration. These problems result from the difficulty to quantitatively evaluate various prediction models in a closed-loop fashion in real human-robot interaction settings. This paper develops a method to evaluate the closed-loop performance of different prediction models. In particular, we compare models with different parameterizations and models with or without online parameter adaptation. Extensive experiments were conducted on a human robot collaboration platform. The experimental results demonstrated that human motion prediction significantly enhanced the collaboration efficiency and human safety. Adaptable prediction models that were parameterized by neural networks achieved the best performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源