论文标题

相关的极性金属CA $ _3 $ ru $ _2 $ o $ $ _7 $的电子驱动自旋晶体重质转换

Electronically driven spin-reorientation transition of the correlated polar metal Ca$_3$Ru$_2$O$_7$

论文作者

Marković, I., Watson, M. D., Clark, O. J., Mazzola, F., Morales, E. Abarca, Hooley, C. A., Rosner, H., Polley, C. M., Balasubramanian, T., Mukherjee, S., Kikugawa, N., Sokolov, D. A., Mackenzie, A. P., King, P. D. C.

论文摘要

固体中的极性畸变产生了铁电的可切换宏观极化的众所周知功能,并且在与强旋转轨道耦合结合使用时,可以介导电子状态的巨型自旋分离。虽然通常在绝缘子中发现,但铁电样畸变仍可以保持稳定性,以防止提高巡回赛,从而产生所谓的“极性金属”。在这里,我们研究了CA $ _3 $ ru $ _2 $ o $ $ _7 $的温度依赖性电子结构,一种相关的氧化物金属,其中八面体倾斜和旋转合并以介导明显的极性扭曲。我们的角度分辨光发射测量结果揭示了通过在48 K处通过耦合的结构和自旋晶体转变冷却时大孔状的费米表面的破坏,并伴随着突然的准颗粒相干性发作。我们演示了这些由隐藏的Rashba型自旋轨道耦合介导的带杂交的结果。这是通过散装结构扭曲来实现的,并且当垂直于RU部位的局部对称性潜力的自旋重新孔解锁。我们认为,与带杂交相关的电子能量增益实际上是相变的关键驱动力,它反映了自旋轨道耦合和强电子相关性之间的微妙相互作用,并揭示了在固体中控制磁性下降的新途径。

Polar distortions in solids give rise to the well-known functionality of switchable macroscopic polarisation in ferroelectrics and, when combined with strong spin-orbit coupling, can mediate giant spin splittings of electronic states. While typically found in insulators, ferroelectric-like distortions can remain robust against increasing itineracy, giving rise to so-called "polar metals". Here, we investigate the temperature-dependent electronic structure of Ca$_3$Ru$_2$O$_7$, a correlated oxide metal in which octahedral tilts and rotations combine to mediate pronounced polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spin-reorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridisation mediated by a hidden Rashba-type spin-orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridisation is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations, and revealing a new route to control magnetic ordering in solids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源