论文标题

嘈杂量子计算机上的时间信息处理

Temporal Information Processing on Noisy Quantum Computers

论文作者

Chen, Jiayin, Nurdin, Hendra I., Yamamoto, Naoki

论文摘要

机器学习和量子计算的结合已成为解决以前无法维持的问题的一种有希望的方法。储层计算是一种有效的学习范式,它利用非线性动力学系统进行时间信息处理,即对输入序列的处理以产生输出序列。在这里,我们提出了利用复杂耗散量子动力学的量子储存计算。我们的量子储层类是通用的,因为任何非线性褪色的存储映射都可以在该类别的量子储层上密切和均匀地近似地近似。我们描述了通用类的一个子类,该子类可以使用本机的量子门易于实现。基于远程访问的基于云的超导量子计算机的原则实验表明,小而嘈杂的量子储层可以处理高阶非线性时间任务。我们的理论和实验结果为近期栅极模型量子计算机的有吸引力的时间处理应用铺平了路径,这些计算机增加了保真度,但没有量子误差校正,这表示这些设备在更广泛的应用中的潜力,包括神经建模,语音识别和自然语言处理,超越了静态分类和回归任务。

The combination of machine learning and quantum computing has emerged as a promising approach for addressing previously untenable problems. Reservoir computing is an efficient learning paradigm that utilizes nonlinear dynamical systems for temporal information processing, i.e., processing of input sequences to produce output sequences. Here we propose quantum reservoir computing that harnesses complex dissipative quantum dynamics. Our class of quantum reservoirs is universal, in that any nonlinear fading memory map can be approximated arbitrarily closely and uniformly over all inputs by a quantum reservoir from this class. We describe a subclass of the universal class that is readily implementable using quantum gates native to current noisy gate-model quantum computers. Proof-of-principle experiments on remotely accessed cloud-based superconducting quantum computers demonstrate that small and noisy quantum reservoirs can tackle high-order nonlinear temporal tasks. Our theoretical and experimental results pave the path for attractive temporal processing applications of near-term gate-model quantum computers of increasing fidelity but without quantum error correction, signifying the potential of these devices for wider applications including neural modeling, speech recognition and natural language processing, going beyond static classification and regression tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源