论文标题

深入强化学习,基于情感和知识的算法交易

Sentiment and Knowledge Based Algorithmic Trading with Deep Reinforcement Learning

论文作者

Nan, Abhishek, Perumal, Anandh, Zaiane, Osmar R.

论文摘要

由于其固有的性质,算法交易是一个很难解决的问题。现实世界中涉及的变量太多,这几乎无法具有可靠的自动股票交易算法。缺乏可靠的标记数据,这些数据考虑了决定了市场跌宕起伏的物理和生理因素,这阻碍了监督的学习尝试,以实现可靠的预测。为了学习一项良好的交易政策,我们使用加强学习来制定一种方法,该学习使用传统的时间序列股票价格数据,并将其与新闻头条情绪相结合,同时利用知识图来利用有关隐性关系的新闻。

Algorithmic trading, due to its inherent nature, is a difficult problem to tackle; there are too many variables involved in the real world which make it almost impossible to have reliable algorithms for automated stock trading. The lack of reliable labelled data that considers physical and physiological factors that dictate the ups and downs of the market, has hindered the supervised learning attempts for dependable predictions. To learn a good policy for trading, we formulate an approach using reinforcement learning which uses traditional time series stock price data and combines it with news headline sentiments, while leveraging knowledge graphs for exploiting news about implicit relationships.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源