论文标题
有限字段的二面体组代码
Dihedral group codes over finite fields
论文作者
论文摘要
Bazzi和Mitter [3]表明,二进制二进制组代码在渐近上是好的。在本文中,我们证明了具有良好数学属性的任何有限领域上的二面体组代码在渐近上是好的。如果该领域的特征是,我们在渐近地构建良好的自我双重二面体组代码。如果归档的特征很奇怪,我们既构建渐近良好的自动二面体组代码,又构建渐近良好的LCD二面体组代码。
Bazzi and Mitter [3] showed that binary dihedral group codes are asymptotically good. In this paper we prove that the dihedral group codes over any finite field with good mathematical properties are asymptotically good. If the characteristic of the field is even, we construct asymptotically good self-dual dihedral group codes. If the characteristic of the filed is odd, we construct both the asymptotically good self-orthogonal dihedral group codes, and the asymptotically good LCD dihedral group codes.