论文标题
薄膜固态易碎的幂律缩放:一种onsager差异方法
Power-law scaling for solid-state dewetting of thin films: an Onsager variational approach
论文作者
论文摘要
我们通过考虑在平坦的刚性基板上的半无限固体薄膜中的接触回收来检查表面扩散控制的固态露水的动力学。该分析是在应用于表面扩散控制形态进化的Onsager变分原理的框架内进行的。基于这种方法,我们得出了一个简单的,简化的模型,以定量分析脱焊过程的幂律缩放。使用渐近分析和数值模拟对减少订单模型,我们发现回缩距离随着$ 2/5 $的时间功率和山脊高度(与接触触点相邻)的高度增长,随着$ 1/5 $ $ 1/5 $的时间功率。尽管渐近分析的重点是迟到和相对简单的几何模型,但Onsager方法适用于所有时间和任意复杂性形态的描述。
We examine the kinetics of surface diffusion-controlled, solid-state dewetting by consideration of the retraction of the contact in a semi-infinite solid thin film on a flat rigid substrate. The analysis is performed within the framework of the Onsager variational principle applied to surface diffusion-controlled morphology evolution. Based on this approach, we derive a simple, reduced-order model to quantitatively analyse the power-law scaling of the dewetting process. Using asymptotic analysis and numerical simulations for the reduced-order model, we find that the retraction distance grows as the $2/5$ power of time and the height of the ridge, adjacent to the contact, grows as the $1/5$ power of time for late time. While the asymptotic analysis focuses on late time and a relatively simple geometric model, the Onsager approach is applicable to all times and descriptions of the morphology of arbitrary complexity.