论文标题
深钢筋学习的基于盲MMWAVE MIMO光束对齐
Deep Reinforcement Learning based Blind mmWave MIMO Beam Alignment
论文作者
论文摘要
定向光束成型是使用毫米波(MMWave)技术实现强大的无线通信系统的关键组件。使用蛮力搜索空间的光束对准会引入时间开销,而位置辅助盲梁对准为系统增加了其他硬件要求。在本文中,我们根据基站获得的用户设备的RF指纹介绍了一种用于盲梁对齐的方法。所提出的系统在多个基站蜂窝环境上进行盲束对准,并使用深入的增强学习,多个移动用户。我们提出了一种新型的神经网络体系结构,可以处理连续和离散动作的混合,并使用策略梯度方法来训练模型。我们的结果表明,所提出的方法可以达到传统方法的四倍,而无需任何开销。
Directional beamforming is a crucial component for realizing robust wireless communication systems using millimeter wave (mmWave) technology. Beam alignment using brute-force search of the space introduces time overhead while location aided blind beam alignment adds additional hardware requirements to the system. In this paper, we introduce a method for blind beam alignment based on the RF fingerprints of user equipment obtained by the base stations. The proposed system performs blind beam alignment on a multiple base station cellular environment with multiple mobile users using deep reinforcement learning. We present a novel neural network architecture that can handle a mix of both continuous and discrete actions and use policy gradient methods to train the model. Our results show that the proposed method can achieve a data rate of up to four times the traditional method without any overheads.