论文标题
非线性物质功率谱,而无需筛选$ f(r)$ gravity的动态建模
Non-linear matter power spectrum without screening dynamics modelling in $f(R)$ gravity
论文作者
论文摘要
Halo模型是一种用于建模非线性功率谱的物理直观方法,尤其是对于标准$λ$ CDM型号的替代方法。在本文中,我们检查了以前的\ texttt {cham}方法\ citep {2018mnras.476l..65H}中采用的sheth-tormen屏障公式。例如,我们对$ f(r)$ gravity中顶帽暗物质光环的椭圆形崩溃进行了建模。 Sheth-Tormen公式与我们的结果之间达成了良好的一致性。椭圆形倒塌屏障的相对差异小于或等于$ 1.6 \%$。此外,我们验证,对于hu-sawicki $ f(r)$重力的F4和F5案例,筛选机制在非线性功率谱系中并不发挥至关重要的作用,该功率谱系建模高达$ k \ sim1 [h/{h/{\ rm mpc}] $。我们比较了两个版本的修饰重力建模,即/没有/没有筛选。我们发现,通过将有效的牛顿常数视为常数数($ g _ {\ rm eff} = 4/3g_n $)是可以接受的。重力耦合的比例依赖性是相关的。 F4和F5中的结果光谱与以前的\ texttt {cham}结果为0.1 \%$一致。已发布的代码得到了显着加速。最后,我们将光晕模型预测与N体模拟进行比较。我们发现一般频谱曲线是定性的。但是,通过Halo模型方法,存在对物质功率频谱的系统估计,在$ 0.3 h/{\ rm mpc} $和$ 3 h/{\ rm mpc} $之间。这些量表与从两个光环术语统治的机制到一个光晕术语主导的过渡量表重叠。
Halo model is a physically intuitive method for modelling the non-linear power spectrum, especially for the alternatives to the standard $Λ$CDM models. In this paper, we exam the Sheth-Tormen barrier formula adopted in the previous \texttt{CHAM} method \citep{2018MNRAS.476L..65H}. As an example, we model the ellipsoidal collapse of top-hat dark matter haloes in $f(R)$ gravity. A good agreement between Sheth-Tormen formula and our result is achieved. The relative difference in the ellipsoidal collapse barrier is less than or equal to $1.6\%$. Furthermore, we verify that, for F4 and F5 cases of Hu-Sawicki $f(R)$ gravity, the screening mechanism do not play a crucial role in the non-linear power spectrum modelling up to $k\sim1[h/{\rm Mpc}]$. We compare two versions of modified gravity modelling, namely with/without screening. We find that by treating the effective Newton constant as constant number ($G_{\rm eff}=4/3G_N$) is acceptable. The scale dependence of the gravitational coupling is sub-relevant. The resulting spectra in F4 and F5, are in $0.1\%$ agreement with the previous \texttt{CHAM} results. The published code is accelerated significantly. Finally, we compare our halo model prediction with N-body simulation. We find that the general spectrum profile agree, qualitatively. However, via the halo model approach, there exists a systematic under-estimation of the matter power spectrum in the co-moving wavenumber range between $0.3 h/{\rm Mpc}$ and $3 h/{\rm Mpc}$. These scales are overlapping with the transition scales from two halo term dominated regimes to those of one halo term dominated.