论文标题

时空混沌系统预测的大规模光库计算

Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction

论文作者

Rafayelyan, Mushegh, Dong, Jonathan, Tan, Yongqi, Krzakala, Florent, Gigan, Sylvain

论文摘要

储层计算是一种相对较新的计算范式,源自复发性神经网络,并以其使用不同物理技术的广泛实现而闻名。在常规计算机中,很难获得大型储层,因为计算复杂性和内存使用方面的使用量很高。我们提出了一种在非常大的网络上执行储层计算的光学方案,该网络可能能够托管数百万个完全连接的光子节点,这要归功于其并行性和可扩展性的内在属性。我们的实验研究证实,与常规计算机相比,我们的光学方案的计算时间仅是线性取决于网络的光子节点的数量,这是由于电子间接开销所致,而计算的光学部分仍完全平行,并且独立于储层大小。为了证明我们的光学方案的可伸缩性,我们首次在使用高达50 000个光学节点的光储层中从库拉莫托 - sivashinsky方程中获得的大型时空混沌数据集进行了预测。对于常规的冯·诺伊曼机器(Von Neumann Machines)来说,我们的结果极具挑战性,并且通常会大大提高非常规储层计算方法的最新状态。

Reservoir computing is a relatively recent computational paradigm that originates from a recurrent neural network and is known for its wide range of implementations using different physical technologies. Large reservoirs are very hard to obtain in conventional computers, as both the computation complexity and memory usage grow quadratically. We propose an optical scheme performing reservoir computing over very large networks potentially being able to host several millions of fully connected photonic nodes thanks to its intrinsic properties of parallelism and scalability. Our experimental studies confirm that, in contrast to conventional computers, the computation time of our optical scheme is only linearly dependent on the number of photonic nodes of the network, which is due to electronic overheads, while the optical part of computation remains fully parallel and independent of the reservoir size. To demonstrate the scalability of our optical scheme, we perform for the first time predictions on large spatiotemporal chaotic datasets obtained from the Kuramoto-Sivashinsky equation using optical reservoirs with up to 50 000 optical nodes. Our results are extremely challenging for conventional von Neumann machines, and they significantly advance the state of the art of unconventional reservoir computing approaches, in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源