论文标题

深度神经网络的性能检测北大西洋右鲸鱼

Performance of a Deep Neural Network at Detecting North Atlantic Right Whale Upcalls

论文作者

Kirsebom, Oliver S., Frazao, Fabio, Simard, Yvan, Roy, Nathalie, Matwin, Stan, Giard, Samuel

论文摘要

被动声学提供了一种强大的工具,可用于监视濒临灭绝的北大西洋右鲸($ Eubalaena $ $ $ glacialis $),但是需要强大的检测算法来处理多种多样的声音条件以及记录技术和设备的差异。在这里,我们研究了深神经网络在满足这一需求方面的潜力。 Resnet是一种通常用于图像识别的建筑,经过训练,可以识别北大西洋右鲸鱼特征性的时频表示。该网络使用不同的设备和部署技术在2018年和2019年在St. \ Lawrence海湾的各个位置记录的数千个示例进行了培训。该网络用作2015 - 2017年五十分钟录音的检测算法,该录音量超过一千个上值,该网络获得了多达80%的回忆,同时保持了90%的精度。重要的是,随着训练数据集引入更多差异,网络的性能会提高,而使用常规的线性判别分析方法观察到相反的趋势。我们的工作表明,可以对深层神经网络进行培训,以在多样化和可变条件下识别北大西洋右鲸鱼的呼叫,并具有与现有算法相比的性能。

Passive acoustics provides a powerful tool for monitoring the endangered North Atlantic right whale ($Eubalaena$ $glacialis$), but robust detection algorithms are needed to handle diverse and variable acoustic conditions and differences in recording techniques and equipment. Here, we investigate the potential of deep neural networks for addressing this need. ResNet, an architecture commonly used for image recognition, is trained to recognize the time-frequency representation of the characteristic North Atlantic right whale upcall. The network is trained on several thousand examples recorded at various locations in the Gulf of St.\ Lawrence in 2018 and 2019, using different equipment and deployment techniques. Used as a detection algorithm on fifty 30-minute recordings from the years 2015-2017 containing over one thousand upcalls, the network achieves recalls up to 80%, while maintaining a precision of 90%. Importantly, the performance of the network improves as more variance is introduced into the training dataset, whereas the opposite trend is observed using a conventional linear discriminant analysis approach. Our work demonstrates that deep neural networks can be trained to identify North Atlantic right whale upcalls under diverse and variable conditions with a performance that compares favorably to that of existing algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源