论文标题

基于PDE的集团卷积神经网络

PDE-based Group Equivariant Convolutional Neural Networks

论文作者

Smets, Bart, Portegies, Jim, Bekkers, Erik, Duits, Remco

论文摘要

我们提出了一个基于PDE的框架,该框架概括了群体卷积神经网络(G-CNNS)。在此框架中,网络层被视为一组PDE - 造口,几何有意义的PDE-Coefficients成为该层的可训练权重。在同质空间上制定我们的PDE,可以设计这些网络,除了CNN的标准翻译均值外,还可以使用诸如旋转之外的内置对称性设计。 在设计中包含所有所需的对称性,可以消除需要通过昂贵的技术(例如数据增强)来包括它们。我们将在一般均匀的空间环境中讨论我们的基于PDE的G-CNN(PDE-G-CNN),同时还可以介绍我们主要感兴趣的主要情况的细节:Roto-Translation Eprovariance。 我们通过线性群卷积和非线性形态群的卷积以及我们与形式定理支撑的分析核近似结合来解决感兴趣的PDE。我们的内核近似允许对PDE-Solvers的快速GPU实施,我们以本文以LieTorch Extension的形式释放了我们的实现,请访问pytorch,可在https://gitlab.com/bsmetsjr/lietorch上获得。就像线性卷积一样,我们在PDE-G-CNN中训练的核指定了形态卷积。在PDE-G-CNN中,我们不使用非线性,例如最大/分钟和依赖,因为它们已经被形态卷积所包含。 我们提出了一组实验,以证明所提出的PDE-G-CNN的强度,以提高基于深度学习的成像应用的性能,其参数比传统CNN少得多。

We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer's trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/lietorch . Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源