论文标题

渐进的本地过滤器修剪图像检索加速度

Progressive Local Filter Pruning for Image Retrieval Acceleration

论文作者

Wang, Xiaodong, Zheng, Zhedong, He, Yang, Yan, Fei, Zeng, Zhiqiang, Yang, Yi

论文摘要

本文着重于用于图像检索加速度的网络修剪。盛行的图像检索作品的目标是在歧视性特征学习中,而很少关注如何加速模型推断,在现实世界实践中应该考虑这一点。修剪图像检索模型的挑战在于,应尽可能保留中层特征。检索和分类模型的这种不同要求使传统的修剪方法不适合我们的任务。为了解决该问题,我们提出了一种新的渐进局部过滤器修剪(PLFP)方法,以进行图像检索加速度。具体来说,我们一层分析了每个滤镜的局部几何特性,并选择可以由邻居代替的滤镜。然后,我们通过逐渐更改过滤器重量来逐步修剪过滤器。这样,保留了模型的表示能力。为了验证这一点,我们在两个广泛使用的图像检索数据集(即牛津5K和Paris6k)上评估了我们的方法,以及一个人重新识别数据集,即Market-1501。所提出的方法以优越的性能到达常规修剪方法,这表明了图像检索的提议方法的有效性。

This paper focuses on network pruning for image retrieval acceleration. Prevailing image retrieval works target at the discriminative feature learning, while little attention is paid to how to accelerate the model inference, which should be taken into consideration in real-world practice. The challenge of pruning image retrieval models is that the middle-level feature should be preserved as much as possible. Such different requirements of the retrieval and classification model make the traditional pruning methods not that suitable for our task. To solve the problem, we propose a new Progressive Local Filter Pruning (PLFP) method for image retrieval acceleration. Specifically, layer by layer, we analyze the local geometric properties of each filter and select the one that can be replaced by the neighbors. Then we progressively prune the filter by gradually changing the filter weights. In this way, the representation ability of the model is preserved. To verify this, we evaluate our method on two widely-used image retrieval datasets,i.e., Oxford5k and Paris6K, and one person re-identification dataset,i.e., Market-1501. The proposed method arrives with superior performance to the conventional pruning methods, suggesting the effectiveness of the proposed method for image retrieval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源