论文标题
由随机排列产生的随机步行的Arcsine定律,并应用于基因组学
Arcsine laws for random walks generated from random permutations with applications to genomics
论文作者
论文摘要
$ 2N $步骤的简单对称随机步行的经典结果是,高于原点的步骤数,上次访问原点的时间以及最大高度的时间都具有完全相同的分布,并且在缩放到Arcsine Law时会汇聚。在基因组学上的应用中,我们研究了这些统计数据的分布,从均匀的随机置换和木棍($ q $)置换的上升和下降产生的非马克维亚随机步行的分布,并表明它们具有与简单随机步行相同的渐近分布。在特殊情况下,我们还给出了意外的猜想,以及数值证据和部分证明,结果是,即使对于这些步行的其他统计数据,这些统一的统计数据与简单的随机步行相同,因此均匀的置换置换行走的步骤$ 2N $的步骤$ 2N $与简单的随机步行的数量完全相同。我们还使用Stein的Arcsine分布方法将明确的误差界限到限制定理,以及功能性中心限制定理以及曲棍球$(q)$ permuntion的强嵌入,这是独立的。
A classical result for the simple symmetric random walk with $2n$ steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows($q$) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step $2n$ for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Stein's method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows$(q)$ permutation which is of independent interest.