论文标题
一般维度的第一段渗透中的大地测量,大型和合并
Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension
论文作者
论文摘要
我们在$ \ mathbb {z}^d $上使用IID通道时间来考虑第一次通道渗透(FPP)的大地测量学。正如文献中常见的那样,我们假设FPP系统满足某些猜想为真实的基本属性,并从这些属性中得出后果。假设大致如下:(i)$ r $的通用时间的波动量表$σ(r)$大约作为正力$ r^χ$生长,从某种意义上说,两个自然定义的$σ(r)$和$χ$的自然定义是$σ(r)$和$χ$的自然定义。一个固定方向的社区。)主要A.S.得出的后果如下,$ν$表示子多项式功能,$ξ=(1+χ)/2 $横向徘徊的指数:(a)对于一个给定的渐近方向$θ$的单个地理射线,在天然$ h $中以$ $ $ $ $ r READ的指标,该点$ r Ray r Ray,d'd lasties there there dectress od r Ray,d的dectress od rayy d'd resies the d'd resod,超平面最多是$ν(r)/r^{(d-1)ξ} $,(b)该系统没有大型词,即两个网站$ x,y $,$ x,y $ x $ x $ $ $,$ x $和y y $ y $ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x,$ x $ x,$ x $ x $ x,$ x $, $ν(\ ell)/\ ell^{(d-1)ξ} $,(d)在$ d = 2 $中,这是从两个站点朝给定方向朝给定方向的距离$ r $ r $衰减(如$ r^{ - ξ} $ of subpolyNomial因子内的)的概率。我们的入口点密度与$ c/r^{(d-1)ξ} $的自然猜想相比,对应于入口点之间的订单$ r^ξ$的间距,这是横向徘徊的猜想比例。
We consider geodesics for first passage percolation (FPP) on $\mathbb{Z}^d$ with iid passage times. As has been common in the literature, we assume that the FPP system satisfies certain basic properties conjectured to be true, and derive consequences from these properties. The assumptions are roughly as follows: (i) the fluctuation scale $σ(r)$ of the passage time on scale $r$ grows approximately as a positive power $r^χ$, in the sense that two natural definitions of $σ(r)$ and $χ$ yield the same value $χ$, and (ii) the limit shape boundary has curvature uniformly bounded away from 0 and $\infty$ (a requirement we can sometimes limit to a neighborhood of some fixed direction.) The main a.s. consequences derived are the following, with $ν$ denoting a subpolynomial function and $ξ=(1+χ)/2$ the transverse wandering exponent: (a) for one-ended geodesic rays with a given asymptotic direction $θ$, starting in a natural halfspace $H$, for the hyperplane at distance $r$ from $H$, the density of "entry points" where some geodesic ray first crosses the hyperplane is at most $ν(r)/r^{(d-1)ξ}$, (b) the system has no bigeodesics, i.e. two-ended infinite geodesics, (c) given two sites $x,y$, and a third site $z$ at distance at least $\ell$ from $x$ and $y$, the probability that the geodesic from $x$ to $y$ passes through $z$ is at most $ν(\ell)/\ell^{(d-1)ξ}$, and (d) in $d=2$, the probability that the geodesic rays in a given direction from two sites have not coalesced after distance $r$ decays like $r^{-ξ}$ to within a subpolynomial factor. Our entry-point density bound compares to a natural conjecture of $c/r^{(d-1)ξ}$, corresponding to a spacing of order $r^ξ$ between entry points, which is the conjectured scale of the transverse wandering.